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1. Introduction

During the last two years a series of papers has been published on new infinite families of

5-dimensional Sasaki-Einstein geometries Y p,q and Lp,q,r [1 – 11]. The quiver gauge theories

(QGT) dual to these backgrounds have been constructed explicitly and analyzed in detail.

The results of these papers change the status quo in the gauge/gravity duality, since until

recently the only non-trivial superconformal QGT in the context of AdS/CFT was provided

by Klebanov and Witten (KW) [12]. The supergravity dual of this model is T 1,1, which

appears now to be a special case of the Y p,q family.

According to the original Maldacena conjecture the chiral operators of the strongly

coupled N = 4 SU(N) gauge theory are in one-to-one correspondence with the modes of

type IIB supergravity on AdS5 ×S5 [13]. The precise form of the map, however, remains a

mystery. One of the main breakthroughs in the study of the correspondence was the idea

to consider only states with very large angular momentum along the equator of S5 [14].

This amounts, effectively, to taking the Penrose limit of AdS5 × S5. This limit results in

a maximally supersymmetric pp-wave background [15 – 18]. Remarkably the string theory

in this background is exactly solvable in the light-cone gauge [19, 20]. Combined with

the AdS/CFT duality this provides an explicit relation between the dimension and the R-

charge of gauge theory operators dual to the string excitations. These single trace operators

with high R-charge are known as the BMN operators [14].

It appears that for an arbitrary Sasaki-Einstein space M5, the Penrose limit around an

appropriate null geodesic on AdS5 × M5 results in a maximally supersymmetric pp-wave

background [21]. In particular, this can be done for the conifold background. It implies

that, like in the N = 4 case, apart from a BMN operator corresponding to the string

ground state, there are eight additional BMN operators dual to to the degenerate first
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excited state. In the papers [21 – 23] these operators were constructed explicitly in terms of

the chiral fields of the KW model. In short, four operators are built by acting with space-

time derivatives on the BMN operator dual to the ground state, two additional operators

are constructed from the chiral fields in a way similar to the ground state operator, while the

last two BMN operators are built from the two SU(2) currents of the gauge theory. These

operators are non-chiral, but still have protected quantum numbers, as can be verified from

the supergravity spectroscopy analysis.

Similar analysis was also carried out in [24] for the Klebanov-Strassler [25] and Mal-

dacena-Núñez [26] backgrounds, which are dual to non-conformal N = 1 supersymmetric

gauge theories. Like in the conformal cases the Penrose limits around null geodesics located

in the IR region yield exactly solvable string theory models. These represent the non-

relativistic motion and low-lying excitations of heavy hadrons with mass proportional to a

large global charge. It was further shown in [24] that these hadrons, also termed “annulons”,

take the form of heavy non-relativistic strings.1

In our paper we take a step further. We take the Penrose limit of the Y p,q and Lp,q,r

backgrounds and analyze the BMN operators of the dual gauge theories. In our analysis

we make extensive use of the underlying Kähler quotient structure of the CY cones. It

proves to be a very powerful tool for the construction and classification of the chiral gauge

invariant operators. We identify the ground state dual operator as well as six chiral BMN

operators corresponding to the first excited state in the Y p,q and the Lp,q,r cases.

Exactly like in the conifold case there are two non-chiral operators dual to the first

excited string states. Note, however, that the Y p,q geometries have only one SU(2) isometry

factor, while the Lp,q,r spaces have no SU(2) isometry at all. We therefore cannot built the

two non-chiral BMN operators entirely from the SU(2) currents like in the T 1,1 case. This

problem was first addressed by [6], where the so called “short-cut” non-chiral operator was

constructed for the Y p,q case. Although this non-chiral operator is not a component of

any current, it seems to have the right quantum numbers matching the first excited string

state. In the Lp,q,r case there are two independent ”short-cuts”. In this paper we give a

general idea how to build these operators for a general Lp,q,r theory and perform an explicit

construction for the L1,7,3 special case.

The outline of the paper is as follows. In section 2 we show that the Penrose limit of

the AdS5×Y p,q background yields the maximally supersymmetric pp-wave metric. We also

rewrite the light-cone Hamiltonian in terms of the currents and the conformal dimension

operator of the dual gauge theory. In section 3 the BMN construction [21 – 23] for the

KW model is briefly reviewed. We then rewrite the light-cone Hamiltonian it terms of the

derivatives with respect to the Kähler quotient variables of the conifold and reproduce the

results of [21 – 23]. This method is further used to reconstruct the chiral BMN operators

of the Y p,q theory. We also comment on the short-cut operator of [6]. Section 4 is devoted

to the Penrose limit of the Lp,q,r backgrounds. Rather than working with the gauge theory

1See [27] and [28] for the analogous discussion of the non-supersymmetric deformation of the Klebanov-

Strassler background. The “annulons” of the Maldacena-Núñez background and its non-supersymmetric

version appear in [28, 29] For other confining backgrounds see [30, 31]. See also [32] for a general discussion

of “annulons” in a confining gauge theory admitting a supergravity dual background.
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fields, we work again with the Kähler quotient coordinates, successfully constructing the

chiral BMN operators. We end this section with a comment on the “short-cut” operators.

In section 5 we work out the L1,7,3 example providing an explicit construction of the

chiral and non-chiral “short-cut” operators. We close in Section 6 with some remarks and

suggestions for further research.

2. The Penrose limit of Sasaki-Einstein Y
p,q spaces

In this section we will construct a maximally supersymmetric pp-wave background by

taking a Penrose limit of the AdS5 × Y p,q supergravity solution. The global AdS5 metric

is:
1

R2
ds2

AdS5
= −dt2 cosh2 ρ + dρ2 + sinh2 ρdΩ2

3. (2.1)

Let us now briefly review the geometry of the Sasaki-Einstein metric on Y p,q. It is given

by [1, 2]:

1

R2
ds2

Y p,q =
1 − cy

6

(

dθ2 + sin2 θdφ2
)

+
dy2

H(y)
+

H(y)

36
(dβ + c cos θdφ)2 + (2.2)

+
1

9

(

dψ′ − cos θdφ + y (dβ + c cos θdφ)
)2

.

where

H(y) = 2
a − 3y2 + 2cy3

1 − cy
. (2.3)

The conifold case corresponds to c = 0. Otherwise one can re-scale the coordinate y to

put c = 1. Written in this way the first line of (2.2) corresponds to the 4d Kähler-Einstein

basis parameterized by the coordinates θ, φ, β and y, while the second line is associated

with the U(1)-fibration parameterized by the angle ψ′. The coordinates θ, φ and y span

the range:

0 ≤ θ ≤ π, 0 ≤ φ < 2π and y1 ≤ y ≤ y2, (2.4)

where the constants y1,2 are determined by:

y1,2 =
1

4p

(

2p ∓ 3q −
√

4p2 − 3q2
)

. (2.5)

To see the periods of β and ψ′ one has to use angles α and ψ defined by:

α = −
1

6
(β + cψ′) and ψ = ψ′. (2.6)

In these coordinates:

0 ≤ α < 2π`, 0 ≤ ψ < 2π (2.7)

with

` =
q

3q2 − 2p2 + p
√

4p2 − 3q2
. (2.8)

The conifold case corresponds to p = 1, q = 0 with ` = 1/3. For p > 1, q = 0 the metric

describes the orbifold of the conifold T 1,1/Zp and ` = (3p)−1. The 5d compact space Y p,q
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has SU(2) × U(1)F × U(1)R isometry and its local structure is identical for any p, q. The

only impact of the p and q parameters is on the periodicity of the angular coordinate α.

The SU(2) isometry becomes explicit when the coordinates (2.6) are used. In this case one

can conveniently rewrite the 4d Kähler-Einstein metric in terms of the SU(2) left-invariant

Maurer-Cartan forms σi=1,2,3 built from the angles θ, φ and ψ. The Killing-Reeb vector

2i∂ψ′ is associated with R-symmetry U(1)R [2]. Finally, the invariance with respect to the

shift of the α angle corresponds to the U(1)F isometry [4].

The sets of coordinates (θ, φ) and (y, β) describe the base space B4, which is topolog-

ically the product S2 × S2 [1]. The coordinate α then corresponds to an S1 fibration over

B4 and the 5d space is topologically S2 × S3 [1]. To construct a pp-wave background we

will consider a null geodesic lying on the poles of the two spheres. More precisely, we will

put θ = 0 and y = yi with i = 1, 2. This is analogous to the T 1,1 example, where the

maximally supersymmeteric pp-wave background also emerges in the Penrose limit around

a null geodesic located at the poles of the two spheres [21 – 23]. In the Y p,q case there is

only one SU(2) and as a consequence the BMN construction will be different for y = y1

and y = y2. We will use the following coordinate transformation:

t = µx+ +
x−

µR2
ρ =

r

R
y = yi

(

1 − 3
(z1

R

)2
)

θ =

(

6

1 − cyi

)
1

2 z2

R

φ = −ϕ2 −

(

µx+ −
x−

µR2

)

β =
1

yi
ϕ1 + cϕ2 +

(

c +
1

yi

)(

µx+ −
x−

µR2

)

ψ′ = −ϕ1 − ϕ2 +

(

µx+ −
x−

µR2

)

. (2.9)

Plugging this into the 10d metric and taking the limit R → ∞ we get:

ds2 = −4dx+dx−+dr2+r2dΩ2
3+dz2

1 +z2
1dϕ2

1+dz2
2+z2

2dϕ2
2−µ2

(

r2 + z2
1 + z2

2

)

dx+2
. (2.10)

Let us comment on the coordinate transformation (2.9). The transformations of t and ρ

in (2.9) are standard for backgrounds of the form AdS5 × M5. Furthermore, the transfor-

mations of y and θ are well matched for a null geodesic lying at y = yi and θ = 0. The

unusual R−2 scaling of z1 can be understood by relating y to the polar angle ζ of the sphere

spanned by y and ψ [1]:

cos ζ(y) =

(

a − 3y2 + 2cy3

a − y2

)1/2

. (2.11)

It is straightforward to see that expanding around ζ = π/2 (which corresponds to y = yi)

we obtain regular R−1 scaling for this coordinate. Let us also comment on the connection

to the conifold case. The standard T 1,1 coordinates are related to the coordinates of (2.2)

by cos θ1 = y, θ2 = θ, φ1 = −β and φ2 = φ. Substituting c = 0, a = 3 and yi = 1

(corresponding to θ1 = 0) into (2.9) we recover the transformation of [21 – 23].

As was announced in the Introduction (2.10) is the maximally supersymmetric pp-

wave background which preserves all 32 supercharges. Exactly like in the conifold case the

supersymmetry is enhanced since the original geometry had only 4 supercharges in 10d.

The background is also supported by a non-trivial RR 5-form:

F(5) = µ (rdr ∧ dΩ3 + z1dz1 ∧ dϕ1 ∧ z2dz2 ∧ dϕ2) ∧ dx+. (2.12)
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We will close this section by giving a relation between the light-cone world-sheet Hamil-

tonian for the pp-wave background (2.10) and the currents associated with the isometries

of the original background. We have:

H

µ
= −

p+

µ
= i∂x+ = i∂t − i∂φ −

i

6

(

1 +
c

yi

)

∂α + i
(

∂ψ −
c

6
∂α

)

. (2.13)

First in the global AdS coordinates we have i∂t = ∆, where ∆ is the conformal di-

mension operator. The derivative J3 ≡ −i∂φ corresponds to the T3-component of the

SU(2) current. Furthermore, we will denote the U(1)F charge −i`∂α by Jα. Finally, the

R-symmetry charge 2i∂ψ′ is denoted by JR. To summarize, we get:

H

µ
= ∆ − J where J = −J3 −

1

6`

(

1 +
1

yi

)

Jα +
1

2
JR (2.14)

and we from now on we will set µ = 1.

3. The field theory interpretation

Taking the Penrose limit corresponds to focusing on chiral operators with large ∆ and J

both scaling like the ’t Hooft coupling λ = g2
YMN , while keeping the light-cone Hamiltonian

H = ∆ − J finite. For a given J there is a unique light-cone vacuum H = 0. The

corresponding operator in the dual gauge theory has the form TrOJ , where trace is over

the gauge indices. The eight transverse H = 1 excitations of the string are identified by

inserting Φi=1,2,3,4 and Da=1,2,3,4O into the trace [21 – 23]. The goal of this section is to

find the fields O and Φi=1,2,3,4 for the case of the Y p,q field theory dual.

Before proceeding further, let us first briefly review the similar construction [21 – 23]

for the Klebanov-Witten model [12]. The gauge theory dual to the conifold geometry is

coupled to two chiral bi-fundamental multiplets (A+, A−) and (B+, B−), which transform

as a doublet of one of the SU(2)’s each and are inert under the second SU(2). The conifold

coordinates are related to these fields in the following way:

u = A+B+, v = A−B−, x = A+B−, y = A−B+ (3.1)

and the conifold definition uv = xy appears as a consistency condition directly following

from (3.1). The BMN operator Tr (A+B+)J was identified as the dual to the light-cone

Hamiltonian ground state H = 0. Moving the null geodesic from the north to the south

poles of one of the 2-spheres amounts to replacing one of the fields A+ or B+ by A− or B−

respectively. The first excited state H = 1 of the world-sheet Hamiltonian is degenerate

and there are eight BMN operators corresponding to this state. Six operators are given

by:

Dµ=0,...,3Tr (A+B+)J , Tr A+B−(A+B+)J and Tr A−B+(A+B+)J , (3.2)

while the other two BMN operators are constructed by inserting the lowest components of

the two SU(2) conserved currents into the H = 0 operator Tr (A+B+)J :

TrA+Ā−(A+B+)J and TrB̄+B−(A+B+)J . (3.3)

– 5 –
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Figure 1: The quiver diagram of Y 3,2.

Figure 2: All UV Y and UZUY “short” operators of the Y 3,2 quiver theory. The F -term conditions

imply that all these operators are equivalent [6].

Although these operators are explicitly non-chiral they still have protected dimensions

properly matching the H = 1 condition as one can verify by exploring the KK spectrum

compactified on T 1,1 [33, 21].

The quiver diagram of the gauge theory dual to the AdS5 × Y p,q supergravity back-

ground consists of nodes denoting 2p gauge groups connected by 4p+2q arrows correspond-

ing to various fields in bi-fundamental representations [4]. There are six different types of

fields:

• p SU(2) doublets Uα=1,2

• q SU(2) doublets Vα=1,2

• p + q singlets Y

• p − q singlets Z.

The quiver diagram for the special case of p = 3 and q = 2 is shown on figure 1. The

superpotential of the theory is built from various cubic and quartic ”blocks” that can be

represented symbolically as Tr UV Y and Tr UZUY respectively [4]. In both cases the

SU(2) indices are contracted using the ε-matrix. The F -term relations derived from the

– 6 –
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Figure 3: The L+ “long” (left) and the L
−

“long” (right) operator of Y 3,2.

superpotential produce a set of non-trivial relations among the fields. Using these relations

one can construct the chiral ring of the gauge invariant operators [6] (see also [34 – 36]). In

particular, each of the p + q superpotential terms (both cubic and quartic) has four gauge

invariant operators naturally associated with it, namely operators of the form TrUαVβY

or Tr UαZUβY for α, β = 1, 2. The F -term conditions imply that all these operators are

the same. Moreover, the antisymmetric part of the 1
2

⊗ 1
2 product identically vanishes.

Thus we end up with a single spin-1 gauge invariant “short” operator SI=−1,0,−1 (see

figure 2). The next chiral primary is obtained by multiplying all of the Uα, Vα and Z

fields in clockwise direction along the quiver. This results in the so-called “long” operator

L+. Since the F -term conditions impose symmetrization over the SU(2) indices, the only

non-trivial component of this operator transforms in the 1
2(p + q) representation of SU(2).

Finally, there is an additional “long” operator L− built from the Uα and Y fields. It

transforms in the 1
2(p− q) representation (see figure 3). Remarkably, the operators L+ and

L− have winding numbers +1 and 0 with respect to the quiver diagram.

The charges of the operators are given by [6]:

spin J JR Jα

SI 1 2 0

L+
p+q
2 p + q − 1

3` 1

L−
p−q
2 p − q + 1

3` −1

(3.4)

Substituting the charges of the lowest SU(2) component (J3 = −1
2(p + q)) of the L+

operator into the Hamiltonian (2.14) we easily find that H = 0 if y = y1. Therefore the

string vacuum state in this case corresponds to the operator TrLJ
+. Analogously for y = y2

the relevant operator is TrLJ
−. In verifying this statement it is useful to recall that for the

chiral primaries ∆ = 3
2 |JR| and:

p + q −
1

3`
= −

1

3`

1

y1
and p − q +

1

3`
=

1

3`

1

y2
. (3.5)

Next let us consider the insertions corresponding to the eight H = 1 states. As we have

mentioned above four insertion operators are given by space derivatives DµL+ and DµL−

respectively. Therefore we have to identify four additional operators:

– 7 –
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1. We can obtain H = 1 by inserting the “short” operator SI=−1 as it follows immedi-

ately from the table (note that for SI=−1 we have J3 = −1).

2. We took for the H = 0 BMN operators the lowest components of the 1
2 (p + q) and

1
2(p − q) SU(2) representations related to the L+ and L− operators respectively. It

is natural therefore to consider a ”spin flip” operator: we can change the spin of one

of the doublets along the “long” operator then symmetrizing over all possible ”flips”.

Since for the modified operator δJ3 = 1 with all other charges unchanged we find

that it matches perfectly the H = 1 condition. This is analogous to the A+ → A−

and B+ → B− flips in the conifold case.

3. Consider the lowest component of the conserved SU(2) current:

KI
SU(2) =

∑

i

σI
αβTr

(

U i,i+1
α Ū i+1,i

β + V i,i+1
α V̄ i+1,i

β

)

, (3.6)

where σI=1,2,3
αβ are the Pauli matrices. This operator has protected dimension ∆ = 2

and vanishing JR and Jα. On the other hand J3 = −1, 0, 1 and taking the lowest

component (J3 = −1) as an insertion we find the required H = 1 result. Again, as in

the T 1,1 case, there is no apparent field theory argument protecting the naive counting

and we have to analyze the supergravity spectrum with the given quantum numbers

in order to verify the prediction. Unfortunately for an arbitrary Y p,q background it

is quite difficult to carry out these calculations (for related discussions of the issue

see [37] and [38]).

4. The last operator can be produced using the “short-cut” operator [6]. One starts

from the lowest component of “long” operator L+, replaces a fragment V i,i+1
2 U i+1,i+2

2 ,

U i,i+1
2 V i+1,i+2

2 or U i,i+1
2 ZU i+1,i+2

2 by the nearby antichiral Ȳi,i+2 field and finally sym-

metrizes by the ”replacement” all over the quiver. For the new non-chiral operator we

have δJα = 0, δJR = −2 and δJ3 = −1 (recall that we have replaced a symmetrized

product of two SU(2) doublets by a singlet). Furthermore, we have δ∆ = −1. This

might be expected from the fact that the “short-cut” can be thought of as a combi-

nation of an insertion of the U(1)α current Kα =
∑

Y i,i+2Ȳ i+2,i + . . . and a removal

of SI=−1. It is easy to ”verify” that again H = 1. Alternatively, for the case with the

null geodesic at y = y2 we can produce the H = 1 operator by replacing one of the

fragments U i,i+1
2 Y i+1,i−1 of the “long” operator L− (see figure 3) by the correspond-

ing anti-chiral field V̄ i+2,i. Again, the complexity of the Y p,q background prevents us

from verifying this result by supergravity spectrum analysis and we refer the reader

to the related papers [37] and [38].

To summarize, the structure of the BMN operators of the Y p,q theories is quite similar to

the analogous construction in the Klebanov-Witten T 1,1 model. Four out of eight operators

corresponding to the H = 1 excited state are obtained by applying space-time derivatives

on the ground state operator. Two additional operators are produced by the spin ”flip” and

the SU(2) current insertion exactly like in the conifold example. The last two operators (the

– 8 –
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“short” operator insertion and the “short-cut”) differ, however, from the BMN construction

in the KW model. This of course is a remnant of the fact that there is only one SU(2)

factor in the symmetry group of the Y p,q model.

Notice that from four ”non-derivative” operators two are chiral and the other two are

non-chiral precisely like in the conifold case. In the rest of the section we will show that

there is a straightforward way to identify these chiral BMN operators using the fact that a

Calabi-Yau cone over Y p,q is actually a Kähler quotient C
4//U(1), namely a gauged linear

σ-model (GLSM) with U(1) charges (p, p,−p+q,−p−q) [2]. As one of the checks, exploring

the chiral ring relations (as was briefly outlined above) one arrives at the conclusion, that

all the gauge-invariant chiral operators of the theory are in one-to-one correspondence with

U(1)-invariant polynomials of the GLSM. These polynomials are of the form:

P = wn1

1 wn2

2 wn3

3 wn4

4 , (3.7)

where wi’s are the C
4 coordinates and the non-negative integers ni’s satisfy the U(1)-

invariance condition:

p(n1 + n2) − (p − q)n3 − (p + q)n4 = 0. (3.8)

In particular, in the conifold case the coordinates wi may be identified directly with the

four fields A± and B±. This just reflects the fact that F -term conditions derived from the

Klebanov-Witten superpotential don’t impose non-trivial relations between the fields. For

an arbitrary Y p,q there is certainly no direct link between the fields Uα, Vα, Y , Z and the

wi coordinates of the corresponding GLSM, and we can only map gauge invariant products

of the fields to the polynomials of the form (3.7). There are three types of independent

polynomials for any p and q:

1. ak = wk
1wp−q−k

2 wp
3 with k = 0, . . . , p − q. This corresponds to the (p− q + 1) compo-

nents of the “long” operator L− discussed above.

2. b1 = w2
1w3w4, b2 = w1w2w3w4 and b3 = w2

2w3w4. These are the three components of

the “short” operator SI=−1,0,1.

3. ck = wk
1wp+q−k

2 wp
4 with k = 0, . . . , p + q. This corresponds to the “long” operator

L+.

Next let us denote θi = Arg(wi). Note that ∂θi
= −ini while acting on the polynomials of

the form (3.7). Moreover, the derivatives ∂θi
can be expressed in terms of the derivatives

with respect to the angular coordinates appearing in the metric of Y p,q (see [2] for the

detailed explanation):

∂θ1
= ∂φ + ∂ψ

∂θ2
= −∂φ + ∂ψ

∂θ3
= ∂ψ −

`

2
(p + q)∂α

∂θ4
= ∂ψ +

`

2
(p − q)∂α. (3.9)

– 9 –
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We can use these identities to express the derivatives ∂φ, ∂ψ and ∂α in terms of the deriva-

tives ∂θi
’s. Substituting further these relations into the expressions for JR and J (see (2.14))

we can re-write these currents solely in terms of the numbers ni = −i∂θi
. Finally, since

for the chiral primaries operators ∆ = 3
2 |JR| we obtain the following simple identity for

H = ∆ − J (we will put µ = 1):

HC.P. = n1 + n3 if y = y1 and HC.P. = n1 + n4 if y = y2. (3.10)

Here the subscript “C.P.” reminds again that the relation is valid only for chiral primary

operators and we used (3.5) in the calculations.

We are now in a position to verify our results for the BMN operators dual to the H = 0

and H = 1 string states. For simplicity let us consider the y = y1 case. Since all ni in (3.7)

are non-negative, HC.P. = 0 iff n1, n3 = 0. The only polynomial of this form is cN
0 for

arbitrary N . Since c0 = wp+q
2 wp

4 is associated with the lowest component of the “long”

operator L+, we successfully reproduce our result for the BMN operator dual to the ground

state. Furthermore, there are two options for the HC.P. = 1 state. Namely, for n1 = 1,

n3 = 0 the corresponding polynomial is c1 = w1w
p+q−1
2 wp

4 and for n1 = 0, n3 = 1 the

polynomial is b3 = w2
2w3w4. Since the former corresponds to the spin flip and the latter to

the lowest component of the “short” operator SI=−1 we recover the above-mentioned result

for the two chiral H = 1 states. Finally, let us address the “short-cut” H = 1 non-chiral

operator. As we have just discussed this operator is obtained by the current Kα insertion

into the TrLJ
+ string followed by the SI=−1 operator removal. From the current insertion

we get δH = 2, so we need δH = 1 for the chiral operator SI=−1. From the discussion

above this is clearly the case, since SI=−1 corresponds to the b3 = w2
2w3w4 polynomial with

n1+n3 = 1. The reader may wonder if it is possible to construct another “short-cut” H = 1

operator starting from the same current, but removing another chiral operator from the

string (for instance, SI=+1). An easy check reveals, however, that the SI=−1 “short-cut”

is the only possibility.

4. The L
p,q,r spaces case

In this section we will apply the method proposed above to the Lp,q,r case. This is a

larger family of backgrounds with only U(1)3 isometry group, which include the Y p,q sub-

family as a special case. For general p, q and r the gauge theory field content is extremely

complicated and we will not try to present it here (see [7, 10, 8]). Instead, we will use the

underlying Kähler quotient structure of the space exactly as we did for Y p,q in the previous

section. First we will show that the Penrose limit again provides the pp-wave metric (2.10).

Then we will re-write the light-cone Hamiltonian in terms of the derivatives (3.9) and will

use this presentation to identify the BMN operator dual to the ground state and two chiral

”non-derivative” BMN operators corresponding to the first excited state.

We will start with a very brief review of the Lp,q,r geometry. The relevant 5d Sasaki-
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Einstein metric is [5, 11]:

1

R2
ds2

Lp,q,r = (dτ + σ)2 +
ρ2dx2

4∆x
+

ρ2dθ2

∆θ
+

∆x

ρ2

(

sin2 θ

α
dφ +

cos2 θ

β
dψ

)2

+

+
∆θ sin2 θ cos2 θ

ρ2

(

α − x

α
dφ −

β − x

β
dψ

)2

, (4.1)

where

σ =
(α − x) sin2 θ

α
dφ +

(β − x) cos2 θ

β
dψ,

∆x = x(α − x)(β − x) − 1, ∆θ = α cos2 θ + β sin2 θ and ρ2 = ∆θ − x. (4.2)

The constants α and β as well as the period of the angular coordinate τ are very complicated

functions of the three co-prime integer parameters p, q and r [9, 11] satisfying p < r < q.

In particular, for p + q = 2r one has α = β and the geometry reduces to the Y p′,q′ case

with p′ = 1
2(p + q) and q′ = 1

2(q − p). The x coordinate ranges between x1 and x2, the

lowest two roots of the equation ∆x = 0. Moreover, 0 ≤ θ ≤ π
2 .

The 4-dimensional base of the Lp,q,r space is topologically the product S2 ×S2 exactly

like in the Y p,q case. The coordinates x and θ are the azimuthal coordinates on the two

2-spheres. We will again assume that the null geodesic is located at the poles of the spheres,

namely x = x1 or x2 and θ = 0 or π
2 along the geodesic. Since there is no SU(2) isometry

like in the Y p,q geometry, taking the Penrose limit might yield four different interpretations

on the field theory side depending on the four possible locations of the geodesic. For the

sake of simplicity in what follows we will only consider the θ = 0 option.

The coordinate transformation we will use is:

x = xi +
∆′

i

α − xi

z2
1

R2
θ =

(

α

α − xi

)
1

2 z2

R

φ = aiϕ1 + ϕ2 + (1 + ai)

(

µx+ −
x−

µR2

)

ψ = biϕ1 + bi

(

µx+ −
x−

µR2

)

τ = ciϕ1 + (1 + ci)

(

µx+ −
x−

µR2

)

, (4.3)

where i = 1 or 2 and the transformation of the AdS5 coordinates is the same as in the Y p,q

case. The constants ai, bi and ci are given by:

ai =
α(β − xi)

∆′
i

, bi =
β(α − xi)

∆′
i

, ci = −
(β − xi)(α − xi)

∆′
i

with ∆′
i ≡

∂∆x

∂x

∣

∣

∣

∣

x=xi

.

(4.4)

From 4.3 we find that ∂ϕ1
= li, where li = ai∂φ + bi∂ψ + ci∂τ is the Killing vector whose

length vanishes at x = xi [5]. Similarly ∂ϕ1
= ∂φ is the Killing vector whose norm equal to

zero at θ = 0. It means that if all triples among the integers (p, q, r, s) are co-prime, and
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as a consequence there will be no conical singularities, than the periods of both ϕ1 and ϕ2

will be 2π.

Substituting (4.3) into the 10d metric and taking the R → ∞ limit yields the maximally

supersymmetric pp-wave background (2.10) and the light-cone world-sheet Hamiltonian is

given by:
H

µ
= i∂x+ = ∆ − J, (4.5)

where ∆ = i∂t as usual and

J = −ibi∂ψ − i (1 + ai) ∂φ − i (1 + ci) ∂τ . (4.6)

Now we will use the method described in the previous section in order to identify

the chiral BMN operators dual to the ground and the first excited states of the light-cone

Hamiltonian (4.5). A Calabi-Yau cone over the Lp,q,r base is a Kähler quotient with charges

(p, q,−r, r − p − q) and the set of four Killing vectors analogous to the set (3.9) is given

by [9]:

∂θi
= − (ci∂τ + ai∂φ + bi∂ψ) for i = 1, 2

∂θ3
= −∂φ

∂θ4
= −∂ψ. (4.7)

Furthermore, the R-charge current is:

JR = −
2

3
i∂τ . (4.8)

Plugging these identities into (4.5) and recalling again that for chiral primary operators

∆ = 3
2 |JR| we arrive at the following result for µ = 1:

HC.P. = n1 + n3 if x = x1 and HC.P. = n2 + n3 if x = x2. (4.9)

Notice that for a null geodesic lying at θ = π
2 we would get the same result with n3 replaced

by n4.

It is now a straightforward exercise to find the polynomials of wi’s, which will cor-

respond to H = 0 and H = 1. Let us focus on the x = x1 case. As in the Y p,q case

the condition HC.P. = 0 implies that n1 = n3 = 0 and hence the relevant polynomial is

ws
2w

q
4 with s = p + q − r. Finally, for HC.P. = 1 we have polynomials corresponding to

(n1, n3) = (1, 0) and (n1, n3) = (0, 1). The first polynomial is w1w
a
2wb

4 with p + qa− sb = 0

and the second is w3w
c
2w

d
4 with r + qc − sd = 0. Notice that in both cases the solutions

of the Euclidean equations exist, since the integers q and s are co-prime. As we explained

above, for not co-prime q and s the period of the angular coordinates ϕ1 and ϕ2 will be

different from to 2π changing the string spectrum in the pp-wave background (2.10).2

Next let us address the remaining two non-chiral operators corresponding to the H = 1

state. Unlike in the Y p,q case here we do not have SU(2) symmetry and we therefore cannot

2In this case the calculation of the spectrum will be similar to the Penrose limit of the orbifold of

AdS5 × S5 (see [39, 40] and also [41].)
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use the related current as an insertion in order to construct the relevant H = 1 operator.

On the other hand, we have two independent U(1) currents and so we might attempt to

build two appropriate “short-cut” non-chiral operators for each one of the currents. Exactly

like in the Y p,q case we have δH = 2 for these currents, since they are invariant under the

U(1) isometries of the theory, while ∆ = 2 by the field theory arguments. It implies again

that we are looking for two chiral operators with δHC.P. = 1 or n1 + n3 = 1. These are

actually precisely the H = 1 operators corresponding to the polynomials (n1, n3) = (1, 0)

and (n1, n3) = (0, 1) that we have discussed in the previous paragraph. This statement,

however, still needs to be verified by an explicit construction in terms of the field theory

operators similarly to what we did in the Y p,q case.

5. The L
1,7,3 space example

Unfortunately, we were not able to construct explicitly the BMN operators dual to the

ground and the first excited states for arbitrary parameters (p, q, r, s). Instead we will

thoroughly analyze the L1,7,3 example (p = 1, q = 7, r = 3 and s = 5). To this end we

have to identify the polynomials of the GLSM with the charges (1, 7,−3,−5) in terms of

the gauge invariant field theory operators.

As in the previous sections we will denote the Kähler quotient coordinates by w1,

w2, w3 and w4 with the charges 1, 7, −3 and −5 respectively. A simple straightforward

calculation shows that for these charges one has 12 independent polynomials:3

a = w3
1w3, b = w5

2w
7
4, c = w5

1w4, d = w3
2w

7
3, e = w1w2w3w4

f1 = w1w
2
2w

5
3, f2 = w1w

2
2w

3
4, f3 = w2

1w2w
3
3, f4 = w3

1w2w
2
4,

f5 = w4
2w3w

5
4, f6 = w2

2w
3
3w4, f7 = w3

2w
2
3w

3
4. (5.1)

Since the complex space described by the variables is only 3-dimensional, these vari-

ables are subject to many redundant relations between them. Here we will list only a few

of them:

a35b3 = c21d5, (5.2)

e8 = abcd, (5.3)

f3
1 = ad2, f5

2 = cb2, f3
3 = a2d, f5

4 = c3b, f7
5 = b5d, f7

6 = bd3, f7
7 = b3d2. (5.4)

The relations (5.2) and (5.3) can be easily generalized to arbitrary parameters p, q r and

s = p + q − r. Indeed, defining:

a = wr
1w

p
3 , b = ws

2w
q
4, c = ws

1w
p
4 , d = wr

2w
q
3, e = w1w2w3w4 (5.5)

we get:

aqsbpr = cqrdps and ep+q = abcd. (5.6)

3By independence of the polynomials we mean that none of them can be written in terms of other

polynomials from the list, namely there is no relation of the form p = p
n1

1 p
n2

2 . . .
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8

7 6

4

5

3

21
Z

U1

U1

Y

U1

Y

U1

U1

YY

U2 U2

V2 V2

Y

U2

YY

V1
V1

V2 V2

Figure 4: The quiver diagram of L1,7,3 (p = 1, q = 7, r = 3 and s = 5).

Let us next briefly review the field theory content and the superpotential of the gauge

theory dual of an arbitrary Lp,q,r background. There are six types of fields that we will

denote4 by U1, U2, V1, V2, Y and Z following the Y p,q conventions. The multiplicities of

these fields are given by:

mult[U1] = s, mult[U2] = r, mult[V1] = r − p, mult[V2] = q − r,

mult[Y ] = q, mult[Z] = p. (5.7)

In particular, for r = s the multiplicities of U1 and U2 become equal reproducing correctly

the number of the SU(2) doublets (U1, U2) in the Y p′,q′ theory with p′ = 1
2(p + q) = r.

Similar checks can be easily performed for the fields V1 and V2. The quiver diagram of

L1,7,3 is depicted in figure 4. Furthermore, exactly like in the Y p,q case there are three

types of polynomials constructed from these fields that may appear in the superpotential:

W0 = Tr Y U1ZU2, W1 = Tr Y U1V2 and W2 = Tr Y U2V1. (5.8)

The number each term appears in the superpotential are 2p, 2(q − r) and 2(r − p) respec-

tively. The explicit form of the superpotential is quite complicated, but it can be figured

out in a straightforward manner using the corresponding dimer tiling (see [8]). For the

given L1,7,3 example, however, the superpotential blocks (5.8) can be read directly from

the quiver diagram on figure 4.

4In this paper we will follow mostly the notations of [8] exchanging only the fields V1 and V2 in order to

make explicit the similarity to the Y p,q case.
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Differentiating the superpotential with respect to the fields we will obtain a set of F -

term conditions. Unlike in the conifold example these conditions are non-trivial and impose

relations between various operators constructed from the fields. The task of constructing

all possible gauge invariant field polynomials (operators) is very cumbersome already for

the L1,7,3 case, and here we will report only the final results.

First, there are four polynomials analogous to the “long” operators L± which appeared

in the Y p,q diagrams (see figure 3). They can be written in a schematic way as:

L↑
+ = Tr Zp (U1)

s (V1)
q−s , L↓

+ = TrZp (U2)
r (V2)

q−r ,

L↑
− = Tr (U1)

p Y r, L↓
− = Tr (U2)

p Y s. (5.9)

Here the arrows indicate that for r = s the operators L↑
± reduce to the highest SU(2)

components of the “long” operators L± of the related Y p′,q′ theory. Similarly, the operators

L↓
± become the lowest components of L±. Using the diagram in figure 4 it is quite easy to

construct the L↑
+ and L↓

+ operators explicitly for the L1,7,3 case:

L↑
+ = Tr Z21U

2
16V

2
63V

2
38U

2
85V

2
54V

2
47U

2
72, L↓

+ = Tr Z21U
1
13U

1
35V

1
57U

1
76V

1
68U

1
84U

1
42. (5.10)

Like in the Y p,q case these two operators have single representations in terms of the fields

Ui,Vi, Y and Z. The operators L↑
− and L↓

−, however, have many possible representations,

again similar to the Y p,q example. For instance, the operator L↑
− may be written in five

equivalent ways as can be shown by analyzing the set of F -term conditions:

L↑
− = Tr U1

84Y43Y37Y78, Tr U1
13Y37Y78Y81, TrU1

42Y25Y56Y64,

Tr U1
76Y64Y43Y37, Tr U1

35Y56Y64Y43. (5.11)

Using the F -term relations it is quite easy to show that these four operators are equivalent

to each other. For example, in order to prove the equivalence of the first two operators

in (5.11) it is enough to replace U1
84Y43 by Y81U

1
13 using the F -term condition for the field

V 2
38. The operator L↓

− also can be presented in various ways:

L↓
− = Tr U2

85Y56Y64Y43Y37Y78, Tr U2
16Y64Y43Y37Y78Y81, Tr U2

72Y25Y56Y64Y43Y37. (5.12)

The operators L↑
± and L↓

± were called extremal BPS mesons in [7]. Indeed, it can be

verified that these operators have maximal U(1) charges (in modulus) for given R-charge.

Furthermore, it was argued in [7] that these four mesons correspond to the BPS geodesics,

which lie at the vertices of the coordinate rectangular, namely at x = x1 or x2 and θ = 0 or
π
2 . In terms of the Kähler quotient coordinates the vertices are given by wi = wj = 0, where

i = 1 or 2 and j = 3 or 4. Therefore these vertices are well described by the polynomials

a, b, c and d from (5.1). For example, for w2 = w4 = 0 the only non-vanishing polynomial

in (5.1) is a. Thus we find that it is natural to relate the extremal BPS mesons L↑
± and

L↓
± to the variables a, b, c and d. To be more precise the identification is as follows:

L↑
+ ←→ d, L↓

+ ←→ b, L↑
− ←→ a, L↓

− ←→ c. (5.13)
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To prove this statement one can verify, for instance, that R-charges of the correspond-

ing operators and polynomials in (5.13) coincide with each other. Alternatively we can

check (5.13) by substituting the operators L↑↓
± instead of a, b, c and d into the relation (5.2)

and proving it using the F -term conditions. We will not perform this tedious calculation

here. Instead we will confirm (5.2) by examining the quantum numbers of the operators.

Let us assign the following quantum numbers to the gauge theory fields:

U1 U2 V1 V2 Z Y

Q1
1
2 −1

2
1
2 −1

2 0 0

Q2 1 1 1 1 0 0

Q3 0 0 0 0 0 1

(5.14)

Clearly, the superpotential is invariant under these U(1) symmetries, since all of the

superpotential blocks in (5.8) have the same charges (0, 2, 1) with respect to (5.14). These

U(1)’s are actually linear combinations of the U(1)R, U(1)B and the other two U(1) global

symmetries of [7, 8, 10], but for what follows we will not need any relation between the

symmetries of [7, 8, 10] and the charges of the table (5.14). Substituting these charges

into (5.9) we will get the charges of the “long” operators L↑
± and L↓

±. It is now a simple

exercise to confirm that with the identification (5.13) the left and the right hand sides

of (5.2) (or (5.6) for arbitrary p, q and r) have the same charges. This provides a very

non-trivial check of (5.13).

We can use the same method in order to find operators corresponding to the variables

e and fi=1...7. Indeed, we see from (5.3) that the U(1) numbers (5.14) of the operators

corresponding to e are (0, 2, 1). These operators, therefore, are just the superpotential

blocks (5.8). There are 2q blocks in general and their equivalence almost trivially follows

from the F -term conditions. Remarkably, there are precisely two blocks for each Yij field.

For instance, for Y43 we have TrY43U
1
35V

2
54 and Tr Y43V

2
38U

1
84. Let us next consider the

variable f7. From (5.14) and the last equation in (5.3) we see that the charges of the

corresponding operator are (−1
2 , 5, 0). We found two gauge invariant products of the fields

with these quantum numbers:

f7 ←→ Tr U1
42Z21U

1
13V

2
38U

2
85V

1
54 and Tr U2

72Z21U
1
13V

2
38U

1
84V

2
47. (5.15)

Let us show as a simple exercise that if one imposes the F -term conditions, the two oper-

ators above become equivalent. Indeed, from the F -term condition for the field Y25 it is

clear that we can replace the V 2
54U

1
42 in the first sequence of the fields by V 1

57U
2
72. Next,

in order to arrive at the second operator in (5.15) we have to replace U2
85V

1
57 by U1

84V
2
47

using the F -term condition for the field Y78. Using similar steps it can be shown that the

last equation in (5.4) indeed holds when we replace the polynomials f7, b and d by the

appropriate operators.
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Let us represent the corresponding operators for the rest of the polynomials:

f1 ←→ Tr Y43U
1
35V

1
57U

1
76V

1
68U

1
84, . . .

f2 ←→ Tr Y56V
2
63V

2
38U

2
85, . . .

f3 ←→ Tr Y43U
1
35Y56V

1
68U

1
84, . . .

f4 ←→ Tr Y43Y37U
2
72Y25V

2
54, . . .

f5 ←→ Tr U1
84V

2
47U

2
72Z21U

2
16V

2
63V

2
38, . . .

f6 ←→ Tr V 2
38U

1
84U

1
42Z21U

1
13, . . . (5.16)

Here the dots remind us that in general there are many other operators related to the same

polynomial, which are equivalent by virtue of the F -term relations.

Finally, we are in a position to identify two non-holomorphic “short-cut” operators

corresponding to the H = 1 excitation of the string, as we have discussed in the end of the

previous section.

Let us focus on the null geodesic that lies at x = x2 and θ = π
2 . We saw in the previous

section that for chiral primaries operators the string Hamiltonian takes the following form

(see (4.9) and the discussion following it):

HC.P. = n2 + n4. (5.17)

This immediately implies that the polynomial corresponding to the ground state H = 0 is

a, which in turn is associated with the chiral operator L↑
−. Furthermore, the first excited

state with (n2, n4) = (0, 1) is related to the polynomial c and the corresponding operator

is L↓
−. From (5.1) it follows that for (n2, n4) = (1, 0) the polynomial is f3 and the relevant

operator appears in (5.16).

Now let us address the construction of the “short-cut” operators. In the Y p,q example

we multiplied the ground state operator by one of the U(1) currents and then removed

a chiral primary operator corresponding to H = 1. The “short-cut” operator produced

this way is expected to correspond to H = 1, since for the current we have H = 2. We

will adopt this way of construction also for the case at hand. The only novel feature in

the L1,7,3 case is that we will start from a product of two operators corresponding to the

ground state. This, of course, does not alter the final H = 1 result for the “short-cut”

operator. For the first operator we have in a schematic way:

U1
35Y56Y64Y43 · Y78U

1
84Y43Y37 · Ū2

58U
2
85 = U1

35Ū
2
58U

1
84Y43 · Y56Y64Y43Y37Y78U

2
85. (5.18)

Here the first two terms on the left hand side are different representations of the H = 0

“long” operator L↑
− and the third term corresponds to the U(1) current. The last term

on the right hand side is the L↓
− operator. We therefore conclude that the “short-cut”

operator we are interested in is:

O(1) = TrU1
35Ū

2
58U

1
84Y43. (5.19)

Clearly there are many other “short-cut” operators with exactly the same quantum num-

bers, since we could have started with other representations for the operators L↑
− and

L↓
−.
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For the second operator we write:

U1
35Y56Y64Y43 · Y37Y78U

1
84Y43 · V̄ 1

86V
1
68 = V̄ 2

86Y64Y43Y37Y78 · U
1
35Y56V

1
68U

1
84Y43. (5.20)

The first two terms on the left hand side are the “long” operator L↑
− and the third term

corresponds to the U(1) current. On the right hand side the second term is an operator

associated with the polynomial f3 (see (5.16)) and the first term is the the second “short-

cut” operator:

O(2) = Tr V̄ 1
86Y64Y43Y37Y78. (5.21)

Again, there are many other operators equivalent to these “short-cut” operators that one

can easily derive starting from different representations for the operators corresponding to

the polynomials a and f3.

6. Conclusions

In this paper we have investigated the Penrose limit of the Y p,q and Lp,q,r families of

Sasaki-Einstein geometries. The results presented here, therefore, extend the previous

studies of [21 – 23]. In contrast to the Klebanov-Witten model, however, the quiver gauge

theories dual to the new backgrounds are quite involved, so a straightforward analysis of the

F -term relations becomes a formidable task. On the other hand working with polynomials

of the Kähler quotient coordinates provides an easy way to identify the ground state BMN

operator as well as the chiral operators dual to the first excited string state. We have also

given a general idea how to construct non-chiral “short-cut” operators of [6] in the Lp,q,r

models and provided an explicit solution in the L1,7,3 case.

Unfortunately, we were not able to perform the supergravity spectrum analysis in

these backgrounds, in order to verify that the “short-cut” operators have proper dimensions

matching the first excited string state. The first step towards this direction was done [37, 38]

and it will be very interesting to pursue this direction in the future.
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